A W B B EEE RS E & - - S S & E E s s

—Ivcw.,aw(f

where the parameters a, J and A are given in terms of transit times by

a = 3(m ) o
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and where the mean transit times in both compartments 7, and Tg and the
mean transit time of an intravascular tracer Ty are given in terms of the tlow

1 The two compartment exchange model by (compare Easi 1.2 with Eas, 34)

v
A simple tracer-kinetic model that produces both blood flow and extraction low T, ﬁ (13)
is the two compartment exchange model [Sourbron 2009] [Brix 1999] [Brix 2004] VL i
[Brix 2010]. It 1s fully defined by the four parameters Fp, (plasma flow), Vp T i (14)
{plasma volume), Fg (extraction flow) ond Vg (volume of the extravascular, Fg
extracellular space or interstitial volume, for short). Applying conservation of Pl - Z’; (15)
tracer mass to cach compartment produces the model equations. Fp

The inverse mean transit times thus are given in terms of kinetie parameters

V,C. = —(F+Fp)Cp+ FEC + FyCpa ) and in terms of the parameters a, 3 and A as [Donaldson 2010
e = »)Cp rCE nCp.
VECE = FgC,— FeCe (2) T = kn=fu+fan=0+08- kg2 (16)
with the amount of tracer in plasma ¢ = V,C, and the amount of tracer Tr_1 = kip=fia = ﬂ (17)
n the interstitial space g2 = Vg Cg these cquations read in terms of the kinetic A k21
transfer constants T5' = ka=/fo=Ala-8)+3 (18)

This can easily be verified Lo be Lhe inverse of Eqs 10 - 12 Eqgs. 13-15 and Eqs.

q = =+ )+ fu;+n (3) 16-18 can casily be fulfilled by sctting o and 3. to the values in Eqs. 10-12
C e Farmi= i (4) The total tissue concentration C = V,Cp + VECE takes the form C = FyR&
S i 1292 C,.a with a biexponential residuc function R = Ry + Rg
Here the flows are given in lerms of the kinetic transfer constants by R(t) = exp(- 3t) + A(cxp(~at) ~ exp(~6t)) (19)
" Fitting the model (Eq. 19) to the data C(t) and Cp a(t) produces the four
Fg = faVp () parameters A, a, J and Fp. The parameters Ty, T and Ty are found from
Fe = fuVe (6) their inverses (Eqs. 16, 17, 18) and the parameters Vj,, Vi, and Fg are found
F, = faV, (7 from the nverses of Eqs. 13, 14 and 15:

Denoting the convolution product of two functions with the symbol “&" the Vi = FTg (20)
solutions for C, and Cr can be written as V,Cp, = F, R, @ Cp 4 and VeCE = s A Ty _ 1 (1)
FoReg ®Cp a- The functions /, and R are given by the following expressions: E = ENTS =

Vg = FeTg (22)
Ry(t) = exp(=8t) + T a A (exp(-at) — exp(=5t)) (8) I'his can mosL casily be verified by inserting Eqs. 20-22 into kgs. 13-15
Re(t) = (1-Tpa) A (exp(—at) — exp(—it)) (9) Two important review papers are (Tofts 1997] and [Brix 2010]




2 The two compartment exchange model revis-
ited
Tolts and Kermode have used a diflerent approach [Tofts 1999]. They consider

that the tracer has already been applied (t = 0 is the end of the tracer admin-
istration) and establish the bidirectional approach

WG, = JuCc -~ Gy~ f;,Cp (23)
VeCr = fuCy - fCE (24)

Elimination of Cg results in the ordinary differential equalion
VEWCp 4 (fiaVy + faVe + Vi) Cp + fiafyCp =0 (25)

A solution s of the form
Cp(t) = Ay exp(—byt) + Azexp(=bat) (26)
Eqs. 24 and 26 can be rewritten as

Cg + k2Cp = ky( Ay exp(- bit) + Az exp(—bat)) (27

where ky = fa, /Vg = FE Vg and ky = FialVe = FE Ve
The solution is

by Ay

kb

ky Ay
C,_'(I) = T 1442

exp(=bit) + == exp(~bat) + cexp(=kat)  (28)
2 - by

The constant ¢ is determined by the initial condition Cp(0) = 0. The total
signal is then given by

Ak Agky
b — k2 bz— ke

Summuo = VyCp + VeCE & 7( )cxp( k) (29)

k
4 Aj (17 b.7 - )exp(—b;f) (30)

exp(-bat) (31)

where 4 = Vg/V},. This is of the form similar (but not equal) to Stissue in the
article of Roberts et al. [Roberts 2000] Since it is a variation of Toft's equations
it is also referred sometimes as a (modified) Tolts model. It should, however,
not be confused with the modified Tofts model in Section 5

3 The two compartment uptake model

For the 2 compartment exchange model, there exist 3 limiting regimes:

1. no exchange limit Fg = 0
2. onc compartment limit Vg — 0
3 fast exchange limit Fg — o0

A further simplification of the two compartment exchange model is the two
compartment uptake model defined by Ce(t) << Cy(t): The model cquations for
the uptake model are [Bazelaire 2005

v.C, —(Fe + Fp)Cp + FCpa (32)
VeCg = FgCp (33)
The residuum functions are
Ry(t) = exp(-t/Ty) (34)
ReW) = E(1-exp(-4/T) (35)

with E = Fg/(Fg + F,) being the extraction fraction.
The total tissue concentration 18 C = F, R @ Cp 4 with

R(t) = exp(=t/T;) + E (1 ~ exp(=t/Tp)) (36)

Fitting the data to the total tissue concentration yields the 3 parameters T),
E, and F,, The parameters V,, and F: can be found from

Velt) = 1T “_Fg (37)
EF,
Fe) = % (38)

The model is fully define by the three porameters Ty, E, and F}, and has
only one monoexponential limit (£ = 0)

4 The Tofts model

A one-cotnpartment model can be used when the blood-brain-barrier (BBB) is
intact, The total tissue concentration 1s C = F,R@ C;, 4 with

R(t) = exp(—t/Ty) (39)

A two parameter fit 1o the model produces Fj, and T, from which the blood
volume can be computed as
Vilt) = T,y (40)
In case of a broken BBB a more abstract notation is used for determining
the total concentration:

Jeteans

L — Het

C= exp{—thep) @ Cpa (41)




where Het is the blood hacmatocrit-value. A one-compartment model with
these notations is commonly referred to in the literature as “Tofts model”. The
parameter K'™™ must be interpreted as Fg when the signal from tracer in the
microvasculature is negligible. In this permeability limited regime it can be
derived that Vg = K'*™ /&P, Conversely, K*™"™ cquals plasma llow Fp when
the microvascular signal is non-negligible. In this Row-limited regime, the value
of K'm /L cquals the extracellular volume. Note that the assutption of a
well-mixed space in this regime is only valid if tracer extravasation is sufliciently
rapid, so plasma and interstitium have equal concentrations.

5 The modified Tofts model

When the temporal resolution is nol sullicient to measure the broadening of the
arterial input function Cy, 4 in the microvasculature, the concentrations in the
tissue plasma and in the artery are often assumed to be equal

7 F
el —E _ exp(— oC 49
cit) = T an"'“ Sl exp(—t/Te) ®Cpa (42)

This model we refer to as the modiyfied Tofts model. It is Tg the mean transit
time of the interstitium, so the model provides the means to estimate V,, Fr
and the volume of the interstitium Vg = FgTg
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1 The 2 compartment exchange model

The concentration of the contrast agent in the tissue ¢(t) can be written as
follows:
at) = Fp cp(t) & Racxw(t)

where F}, is the tissue plasma perfusion, c,(t) is the concentration of the contrast
agent in the feeding arterin (AIF) and Roexw is the input response function
given by:

Racxwmt) = Aexp(—at) + (1 = A)exp(=5t)
The relations to the transfer constants ko), Aj2, ka2 are given according to
Donaldson et al. by [Donaldson 2010]

ko = Ale—3)+8
aBd
k - e
12 T
ko = a+8-kn

The relation to the model parameters arc given by

= FP

v, = k_m
PS = (ka ko) vp

PS

v = m

This is a 4 parameter model with Fp, A, o, 3

2 The uptake model

In the uptake model we have kyz = 0 and we set @ = 0,9 = 8, B = A sa that
the input response function 1s given as

Rocum(t) = B + (1 — B)exp(-7t)

we therefrom get
kay = kot

k21

and the standard parameters v, and PS can be calculated as

B=

, B | B-F,
b = e e

3 The 2 compartment exchange model revisited

In the notation of Sourbron [Sourbron 2009] we have the input response function

as

R(t)=(1 - E.)exp(—tK;) + E_exp(—tK_)

so that we have E_ = A, 3= Ky, n= K_ and

1 o , -
kot = -T—_EfE_(.l'\_ K:)+ K.
1 I
kiz = E:(I"’\i)Tﬁ
1 ” 1
kay = T-gfl\*v—h_' Tr‘

wherefrom the standard parameters vy, v, and PS can be calculated as

F,
Up = —" PS = v, (k21 — ko1)s ve = ES‘
ko k2
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1 The Fermi function model

The Fermi function method consists in replacing the residue function by a Fermi
function model. In the following we will develop the theory of the Fermi function
method. The amount of contrast agent (CA) in the region of interest (ROI) at
any time is given by [Jerosch-Herold 1998]

q(t) = Fj; [cin(#) — Cou(s)] ds (1)

where the outflow CA concentration o, (s) is given by the inflow ¢n(s) and the
transfer function h(t) according to

t
Comt) = j anlsdh(s = t)ds = cialt) B A(0) )

where ® denotes the convolution. Then equation 1 ean be rewritten as a con-
volution of a residuum function with the imflow

L
alt) = p[ cin(s)® (1~ h(s = 1))ds = R ® cinlt) ()
o

with the residuum function given by

at) =F (1 = /D' h(s — t)(ls) =F.R() )

where the transfer function at t = 0 is given by A(0) = 0 and thus Rp(0) = F
We now use the Ferom function model
1

= ta) (5)

Ret) £ [oxp((t to — ta)k + l]] uft

0 t<t
ult-ta) = {1 r:l:

The solution process now uses as input ¢jn: the inflow tracer concentration
or arterial input function which is known as amount of contrast agent delivered

to the ROI, and g(t): the quantity of contrast agent in a tissuc ROI or fissue
Junction

Then ¢(t) = Rr ® e, is solved in Fourier space and RF is fitted to the
measured data g(t) and ¢4 using the Levenberg-Marquard algorithm.

The experimental conditions are

. The signal intensity is linerily proportional to the CA concentration for
the CA dosage used in the study

The relationship between image intensity and CA concentration is the
same in the blood pool and the myocardium

. Effects of water exchange in the myocardium are minimized (short TR,
high flip angle) and a no-exchange model can be applied

. The signal time course in the left ventricular blood pool can be used as
an input function

The shape of the tissue impulse response f(t) can be approximated with
a Fermi-function

en

2 The model-free deconvolution

In the model-free approach again the tissue function g(t) is given by the convo-
lution of the arterial mput function ¢, with an impulse response function r(t)
where the flow F is given by the impulse response at ¢ = 0 [Jerosch-Herold 2002].

qit) = eaalt)2r(t) (6)
ri0) = F
We can write the convolution in form of a matrix product
'
G = Z.‘L,rj i 6 (M
11
where
cin(t1) 0 (U} 0
cltz)  Galt) 0o 0 0
A=| cnlta) @alta) 0 0 (8)
; s 2 0
calty) cnlty-1) 7o - calth)

We determine the impulse response r, from the matrix A where we develop
the impulse response into basis functions. As basis functions we use the j'ths
B-splines of order k.

»
ro=Y_a,BM(t) a,cR ()
=1




We write

ai=Y_ Doy & min{|| D = § ;6 € ®°) (10)
I

with

n
D, = Z!};“(lr)rm(t, ~ u)du (11)
o
Regularization

Instead of solving the matrix equation
DE=§ (12)
directly by inversion, we use the original model + side constraints {the so-called
normal equation)

DTDG+ NLTLa=DT§ (13)
For L = I (standard form) the solution 1s given by
. PR u-rq—
s=Y |5 L2, VD(D) = UsvT 14
a L [ 7 SVD(D) (14)

For L # I we transform the normal equations numerically into standard
form and again we have

GSVD(D) = UEvT (15)

ey ) fT-,
“”L,[Tr

where we determine the parameter A in both cases from the L-curve.

3 The two compartment exchange model

A simple tracer-kinetic model that produces both blood flow and extraction flow
is the two compartment exchange model [Sourbron 2009) [Brix 1999] [Brix 2004]
[Biix 2010]. It is fully defined by the four paramelers Fp (plasma flow). V,
(plasma volume), Fiz (extraction flow) and Vg (volume of the extravascular,
extracellular space or interstitial volume, for short) Applying conservation of
tracer mass to cach compartment produces the model equations:

VG, = —(Fp+ F)Cp+ FeCi + FCpa (16)
ViCs = FeCp— FeCr (17)

with the amount of tracer in plasma ¢, = V,Cp and the amount of tracer
in the interstitial space g; = VgCp: these equations read in terms of the kinetic
transfer constants

@ = ~Ua+ L)t fizge+ 0 (18)
@ = Jam- foee (19)

Here the flaws are given in terms of the kinetic transler constants by

Fg = f'.‘lvp (20)
Fg = fiaVe (21)
F, = faV, (22)

Denoting the convolution product of two functions with the symbol “&7 the
s for Cp, and Cg can be written as V,Cp = Fplty @ Cp 4 and VeCr =
Zp.4- The functions Ry and Rg are given by the following expressions:

Ry(t) = ecxp(-7t) + Tpa A (exp(—at) — exp(-5t)) (23)
Re(t) = (1-Tpa) A (expi—at) — exp(-5t)) (24)

where the parameters a, 3 and A are given in terms of transit times by

s ](T '-i-Tr_‘—\/(T,,’l-rTF')?mlT,;'TFE') (25)

a\'r
B = é(T;' + T+ (T + T - 4T,;‘TE') (26)
i Tﬂ' = s
A = = (27)

and where the mean transit times in both compartments T, and Tr and the
mean transit time of an intravascular tracer T are given m terms of the flow
by (compare Eqgs. 16,17 with Eqs. 18,19)

%

- Pranlils 9
Lo ==t F, ()
Ve
e 24
B Fr (29)
v, ;
Tp = F, (30)

The inverse mean transit times thus are given in terms of kinetic constants
and in terms of the parameters a, 3 and A as [Donaldson 2010]

V' = fuatm=atpf-fi2 (31)
o _ud :
Te' = ha i (32)
Ti' = for=Ala-0)+0 (33)
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This can easily be verified Lo be the inverse of Eqs. 25 - 27. Eqs. 28-30 and Eqs
31-33 can casily be fulfilled by setting a and 3, to the values in Eqs. 25-27.
The total tissue concentration C = V,C, + VeCE takes the form C = F,R&

Cj.a with a biexponential residue funetion R = Ry + Rg
R(t) = exp(—3t) + A(exp(—at) — exp(-8t)) (34)

Fitting the model (Eq. 34) to the data C(t) and C, (t) produces the four
paramcters A, a, 8 and F,. The parameters T, Tg and Ty are found from
their inverses (Eqs. 31, 32, 33) and the parameters Vi, Vg, and Fg are found
from the inverses of Eqs. 28, 20 and 30:

V, = FTs (35)

Tp i
Fge = F (Tr‘ z 1) (36)
Vg = FgTg (37)

This can most easily be verified by inserling Eqs. 35-37 into Eqs 23-30.
Two important review papers are [Tofts 1997] and [Brix 2010].

4 The two compartment exchange model revis-
ited
"lofts ond Kermode have used a different approach [lofts 1999]. “I'hey consider

that the tracer has already been applied (¢ = 0 is the end of the tracer adrmin-
istration) and establish the bidirectional approach

V.G, = fuCe-faCy - G (38)
VECE = [uCh- fiCe (39)

Elimination of Cg results in the ordinary differential equation
VEVLCY 4 (fiaVe + F Ve + [,Ve) Cp + fiafyCp =0 (40)

A solution is of the form
Cplt) = Ayexp(=byt) + Azexp(—byt) (41)
Eqs. 39 and 41 can be rewritten as

Cg + k2Cp = ki(A) exp(-bit) + Azexp(—bat)) (42)

where ky = fa1/Ve = F3/Ve and kz = fia/ Ve = F}/Ve.
The solution is
1A

=T exp(—iyit) +

Ce(t) =

A_k —bat) + cexp(—hat) (43)

The constant ¢ is determined by the initial condition Cr(0) = 0. The total
signal is then given by

Aak
Stisue = VpCp + VECE ')( ﬁ—if E )-‘xplfk;t] (44)
vk
4+ Ay (l T _lk:) exp(—bit) {45)
+ Ag(l—b;f]k-’)up(—bgl) (46)

where 4 = Vg/V,. This is of the form similar (but not equal) to Siuue in the
article of Roberts et al. [Roberts 2000] Since it is a variation of Toft’s equations
it is also referred sometimes as a (modified) ‘lofts model. It should, however,
nol be confused with the modified Tofts model in Section 7

5 The two compartment uptake model

For the 2 compartment exchange maodel, there exist 3 limiting regimes:
1. no exchange limit Fg - 0
2. one compartment limit Vg — 0
3. fast exchange limit Fg = oo

A further simplification of the two compartment. cxchange model is the two
compartment uptske model defined by Cr(t) < Cp(t), The madel equations for
the uptake mode! are [Bazelaire 2005)

GO, = —(Fe+ F)Cp+ FpCra (47)
Vel = FeGp (48)
The residuum functions are
Rp(t) = exp(=t/T;) (49)
Re(t) = E£(1-exp(-t/T;)) (50)

with E = Fg/(Fr + Fp) being the extraction fraction
The total tissue concentration is C = FoR® Cp 4 with

R(t) = exp(~t/T;) + E (1 - exp(=t/T,)) (51)

Fitting the data to the total tissue concentration yields the 3 parameters T,
E, and F,. The parameters Vy, and Fg can be found from

e

V) = Li}g (52)
EF,

FE() (53)

‘I'he model is fully define by the three parameters Tp,, E, and F, and has
only one monoexponential limit (E = 0).




6 The Tofts model

A onc-compartment model can be used when the bleod-brain-barrier (BBB) is
intact The total tissue concentration is € = F,R® Cp 4 with

R(t) = exp(—t/T,) (54)

A two parameler fit 1o the model produces F
volume can be computed as

and T}, from which the blood

Vo(t) = T, 5, (55)
In case of a broken BBB a more abstract notation is used for determining
the total concentration.
Jorrany

C'_l—Htl

exp(=thop) ¢ Cp.a {56)

where Het is the blood hacmatocrit-value. A one-compartment model with
these notations 1s commonly referred to in the literature as “Tofts model”. The
parameter K '**™ must be interpreted as Fg when the signal from tracer in the
microvasculature is negligible, In this permeability hmited regime it can be
derived that Vg = K'Y /k*®. Conversely, K™ equals plasma flow Fj, when
the microvascular signal is non-negligible. In this Uow-limited regime, the value
of KU /k°P cquals the extracellular volume. Note that the assumption of a
well-mixed space in this regime is only valid if tracer extravasation is sufliciently
rapid, so plasma and interstitium have equal concentrations.

7 The modified Tofts model

When the temporal resolution 1s not sufficient to measure the broadening of the
arterial input function Cp 4 in the microvasculature, the concentrations in the
tissue plasma and in the artery are often assumed to be equal

v, Fg
Cit) = —2—Cpa+ —F—oxp(-~t/Tg) ® Cp, 4
() = e Cra + Toga P/ TE) 9 Cha (67)
This model we refer to as the modified Tojts model. It is T the mean transit
time of the interstitium, so the model provides the means to estimate Vp, Fro
and the volume of the interstitium Vg = FgTg
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1 The Pulsed Arterial Spin Labeling Model ac-
cording to Detre et al.
The Bloch Egs. for the longitudinal magnetisation of a continuously perfused

system which include T} relaxation, brain perfusion and cross relaxation between
brain water and macromolecular spins, are given by

A MP — M,
Ay E M MO M s M [ — T, (1)
dt T
dl,, MO~ M.,
= — " i Kjor My = Koy Min 2
- S 4 e Mo = K M @

where f = tissue perfusion in ml/g/s, Ty, Tim ore the spin lattice relaxation
time at brain water and macromolecule spins in the absence of perfusion and
cross-relaxation, My, M, are the magnetization of brain water and macro-
molecular spins per gramm, Mb“. M,?, are the equilibrium values, M,, A, are
the magnetizations of water per m! arterial/ venous blood and ktgr, krey are the
magnetization transfer rates between brain water and macromolecules.

Assuming that venous blood from the tissue is in equilibrium with the tissue
itself means that there is a proportionality

1
M, = =M, (3
X )
then. under equilibrium conditions the amount of water magnetization flowing

into the brain equals what is leaving so that fAMQ = fMQ = fMP/\ or

1
M= :M;’ (4)
The Bloch Eqn. | can be simplified to

My  MP — A
GO b b G M e M (2= 1)§.ub“ - i\Ma (5)

dt Tu
with A = brain/blood partition coeflicient and
M2 - M, <
a= ll\—l_‘," (6)

being the degree of spin labeling,

Ignoring cross-relaxation in the case where macromolecular spins are not
perturbed, the general solution of Eqn. 5 for an inversion recovery experiment
where spins are not labeled (o = 0) gives:

My(7) = MY — 2M) exp(- (TL” + _l\)r) (7

The steady state solution of Eqn. 5 when macromolecular spins are saturated
M, = 0 without arterial spin labeling (o = 0), gives

T+ J/A

M =
l /Ty + ktor + /X

M (8)

The steady state solution of Eqn. 5 when macromolecular spins are saturated
with ASL (a # 0) gives

YT - (20 = 1)f/A

MEt =
s T+ J/\

At (9)
From Eqs. § and 11 the tissue perfusion can be calculated from the steady
state tissue water magnetization according to

_ A AP - My
Ui (M;n‘ e o 1).\1;~I) (10

where for @ = 1 we have complete inversion, whereas for a = 0.5 we have
saturation.

When arterial spin tagging is advised without saturation of macromolecular
spins, the steady state solution of Eqs. 2 and 5 (sce [Detre 1994])

1Ty — (2o —1)f/A+46
T+ f/N+46

M2 = M (11)

with
Ktor

1+ Timker
Tissue perfusion can then be calculated from the steady state tissue water mag-
netization according to

1 1 Mt — Mp2 s
I+ ’\("n,,m) (l\[;‘-’ + (20 — 1;.\1,;-') (13)

2 The Pulsed Arterial Spin Labeling Model ac-
cording to Buxton et al.

8=

(12)

After the inversion pulse, the arterial magnetization difference is 2aAfop, where
Mo 1s the equilibrium magnetization of arterial blood and the fuctor & accounts

(&)




for incomplete inversion during the tagging pulse: & is the maximum possi-
ble change in the longitudinal magnetization that was achieved [2hang 1993]
{Alsop 1996].

Let the delivery function ¢t} be the normalized arterial concentration of
magnetization arriving at the voxel at time . Let r(t,t') be the residue function
that is the fraction of tagged water molecules that arrived at time ¢ and are
still in the voxel at time t. Furthermore the magnetization relaxation function
m(t,t') is the fraction of the original longitudinal magnetization tag carried by
the water molecule that arrived at time #' that remains at time ¢. The amount
delivered to a particular voxel between t' and ¢ + dt’ is 24 Moy fe(t') where f
is the cerebral blood llow [mi/mi/s). The fraction of the magnetization that
remains at time t is £t — ')m(t — ¢'). Then [Buxton 1998]

i
AM@) = 2.\1(,“‘/ e(t)r(t — t"ym(t — t")dt’ (14)
o

= 2Mosf{c(t) ® [r{t)m(t)]}

The standard ASL kinetic model takes into account Lhe effect of transit delay
from the tagging region to the imaged voxel. We summarize the standard model
as

0 0<t <At
ct) = aexp(—t/Tiw) At <t<7+At  pulsed ASL (15)
0 T+At<t

r(t) = exp(—ft/A)
m(t) = exp(—t/Ty)

Inserting Eqn. 15 into Eqn. 14 leads to the following expressions for the pulsed
ASL difference signals

0 0<t <AL
AM(t) = ¢ 2Mopf(t — At)aexp(—t/Ti)ap(t) AL <t <7+ At  pulsed ASL
2Moy f()a exp{—t/Tiu)q,(t) T+ At<t
(16)
with
O klﬁflr_) exp(kt)(exp(~kAt) — exp(-kt)) Al <t <7+ At
2 L exp(kt)(exp{—kAt) — exp(—k(r + Ab)) T4 At <t
I
A i
T -

Eqn. 16 is the standard model for pulsed ASL-signals

3 The Pulsed Arterial Spin Labeling Model ac-
cording to Wang et al.

We starl from the simple differential equation [Ye 1997]
dM(t)
dt
where Ry, (0.8357") and Ry are the longitudinal relaxation rate of the blood
and myocardium at 15 T [Wang 2010), with 6R = R — Rya being the water
relaxation rate in the presence of the ofl-resonance RF irradiation
A general solution is [Ye 1997], Eqn. (A2)

BR(M(t) — M, (a.wy, Aw)) (17)

t
M(t) = M(0)exp(-61t) + [ exp{—aR(t - 7))AR M dr (18)

The normalized difference belween the amplitude of signal from the tagged
scan and the control scan is [Ye 1997], Eqn. (A3)
A M(a,t)~ A =0,t
AM(t) & I({a,t) ~ M{a = 0,t) (19)
Mo Mo
Then, from 6 R(M,,(a. w1, dw) — My {a = 0,w, Aw)) = —20F, /AN,
[McLaughlin 1997], Eqn. (36), where Fp is the metabolic blood flow, we get
[Ye 1997, Eqn. (A4)

ML L
AME) ’_’F,‘/.\/ exp(- & R(t — 7)) a(r)dr (20)
My o
where we further defined
a(t) = h(t) - exp(~Ria7a) (21)
where A(t) is defined as
0 t<rt
ht)=¢ 1 r<i<my (22)
0 ra<t

where 7 is the “arterial transit time,” is the time for the leading edge of the
tagged bolus to reach the capillary exchange site, 7q is the time for the trail-
ing edge of the tagged bolus to reach the capillary exchange site. H, 1s the
longitudinal relaxation rate of arterial blood

Proof of Eqn. (20) from Eqn. (19) and Eqn. (18):

t
MY = / exp(=8R(L — T))SR(Masla = 0) = Mau(a # 0))dr
Ir
= f exp(-oR(t — 7)) —-2al,/AMy)dr

AM(t)
Mo

il
—EFF/l\[ exp(—dR(t — r))a(r)dr




Proof of Eqn. (18): from Eqn. (17). The Integral of Eqn. (17) is
:\1(1)74'““):/‘ d—"(ﬁgﬂdt:—/l(m.\l(f)r(h /'o'n.u,.(n).u (23)
Insertion of M(t) from Eqn. (18) yiclds
Myexp(—6Rt) —  Mgexp(-6R7) + f' exp(~8R(t = 7))6RM,,(a)dr

i t
- -/ SRAI(t)dt + f SR, (a)dt

t t
= rf JR(A\!,.('xp(»MHJ +[ exp(—aR(t - r))n'H.-\!,_.nIr) dt

t
4-/ ARM, (ov)dt
= My(exp(-dRt) — exp(—é1i7))
t 1}
‘i'/ f(AfSR)(-.\p(—dl?(t—r])JR(\I‘,dfdl
t
+f GRM,,(a)dt

=3
t

'] t
]rxp(—dR(l'-T))M,,(a)dr (nxp(--dﬂ‘(i—r))—1)4\1,,(0](#1»] Mo (a)dt

r

—~

(24)
Derivation with respect to t yields
exp(=dR(t — 7)) =exp(-0R(t-7)) = 1+1 (25)
This is true, thus we have proved Eqn. (18).
Finally, we get |Ye 1997), Eqn. (A6)
AM(e) Ep ; 2
= — exp(=6R(t - 7, 2
T = S = expl-58(E - 7)) (26)
or, in the interval 7, < t < 7 we have [Yang 1995]
A -2 -
AMIE) _ =2, (= Riat)(1 = exp(=6R(t = 7)) 1)

Mo~ XeR
Now, fow-sensitive alternating inversion recovery (FAIR) is implemented fox
spin-lagging using alternating slice-selective and non-selective inversion pulses.
The dynamic myocardial dM signals at multiple 77s were simultancously fitted
for the plasima fiow F, and for arterial transit time 7 based on the following
kinctic model [Yanyg 1998):

%‘“ﬁcxp(—lh'ﬁ)(l —exp(~oR(Ty —~ 7))} Tizr

dM /My = { 0 Thot (28)

where F is the metabolic blood flow, Ryq (0.83s !y and R, are the longitudinal
relaxation rate of the blood and myocardium at 1.5 T [Wang 2010], respectively,
6l = Ry - Rye, Mo is the cquilibrium magnetization of myocardium, A is the
blood tissue water partition coeflicient (0.92ml/g) and 7 is arterial transit time.

My and Ry of myocardinm were fitted [rom experimental data at mnltiple
Tys according to the standard saturation recovery mode!

M(Ty,Tg) = Moexp{ -Te/T2}(1 - exp(-Ti/T1)) (29)

where the non-selective pulse images are used. This equation can be evaluated
at Tgp « T,

Rwne Hoawe
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Figure 1: Sequence for pulsed ASL. Combines ASL (FAIR in this study) unth
a navigator gated, ECG triggered TrueFISP readout sequence

The Figure 1 shows the pulse diagram of the pulsed ASL FAIR TrucFISP
sequence. Selective and non-selective inversion pulses are used for label and
control acquisitions respectively. A slice-selective saturation pulse is applied
prior to labeling pulses to minimize the variations in heart beat. Navigator
ccho is placed on the diaphragm that allows image readont during the end-
expiration phase. Image acquisition is always during the mid-diastole cardiac
phase

The Fig. 2 shows the evolution of the magnetization. To the left the evo-
lution of the magnetization is shown without saturation pulse and to the right
with saturation pulse. The image is given by (he difference A-B, where A slands
for the slice selective inversion and B stands for the non-slice-selective inversion
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Figure 2: Magnetization during pulsed ASL sequence. To the left. Without
saturation pulse. To the right: With saturation pulse.
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